Реферат по кислородной резке

Копьевая резка Сущность и основные условия резки Сущность процесса резки. Кислородная резка [1] стали, основана на свойстве железа гореть в струе чистого кислорода, будучи нагретым, до температуры, близкой к температуре плавления. Температура загорания железа в кислороде зависит от состояния, в котором оно находится. Горение железа происходит с выделением значительного количества тепла и может поддерживаться за счет теплоты сгорания железа. При повышении давления кислорода в струе процесс резки ускоряется за счет повышения скорости реакции окисления и за счет более быстрого удаления окислов из места разреза.

Скачать дипломную Газо-кислородное пламя широко используется не только для подогрева металла при сварке и пайке, но и для различных других видов обработки металла, из которых наиболее распространенным является резка. Процесс кислородной резки металла заключается в сжигании твердого подогретого металла в струе чистого кислорода. Поверхность или кромка разрезаемой детали подогревается пламенем газо-кислородной смеси, выходящей из канала резака. Когда поверхность нагрета до температуры воспламенения, по каналу подается концентрированная струя так называемого режущего кислорода, которая быстро окисляет подогретый металл. Образовавшиеся в месте реза жидкие окислы выдуваются, а окружающий его металл остается твердым. За счет теплоты, выделяемой в процессе горения, подогреваются смежные зоны металла, которые при попадании на них струи режущего кислорода также сгорают, и процесс таким образом продолжается непрерывно.

Кислородная резка металла

Копьевая резка Сущность и основные условия резки Сущность процесса резки. Кислородная резка [1] стали, основана на свойстве железа гореть в струе чистого кислорода, будучи нагретым, до температуры, близкой к температуре плавления. Температура загорания железа в кислороде зависит от состояния, в котором оно находится. Горение железа происходит с выделением значительного количества тепла и может поддерживаться за счет теплоты сгорания железа. При повышении давления кислорода в струе процесс резки ускоряется за счет повышения скорости реакции окисления и за счет более быстрого удаления окислов из места разреза.

Нагревание металла при резке производят газокислородным пламенем. В качестве горючих при резке могут применяться ацетилен, пропан-бутан, пиролизный, природный, коксовый и городской газы, пары керосина [2]. Кроме подогрева металла до температуры горения в кислороде, подогревающее пламя выполняет еще следующие дополнительные функции: подогревает переднюю в направлении резки верхнюю кромку реза впереди струи режущего кислорода до температуры воспламенения, что обеспечивает непрерывность процесса резки; вводит в зону реакции окисления дополнительное тепло, покрывающее его потери за счет теплопроводности металла и в окружающую среду; это имеет особенно важное значение при резке металла малой толщины; создает защитную оболочку вокруг режущей струи кислорода, предохраняющую от подсоса в нее азота из окружающего воздуха; подогревает дополнительно нижнюю кромку реза, что важно при резке больших толщин.

Мощность подогревающего пламени зависит от толщины и состава разрезаемой стали и температуры металла перед резкой. Металл нагревают на узком участке в начале реза, а затем на нагретое место направляют струю режущего кислорода, одновременно передвигая резак по намеченной линии реза. Металл сгорает по всей толщине листа, в котором образуется узкая щель. Интенсивное горение железа в кислороде происходит только в слоях, пограничных с поверхностью режущей струи кислорода, который проникает диффундирует в металл на очень малую глубину.

С момента начала резки дальнейший подогрев металла до температуры воспламенения происходит, в основном, за счет тепла реакции горения железа. При чистой, свободной от ржавчины и окалины поверхности, резка может продолжаться и без дополнительного подогрева. Однако лучше продолжать резать с подогревом, так как это ускоряет процесс. С понижением чистоты кислорода резка идет медленнее и требует большего расхода кислорода.

Это особенно заметно при резке стали больших толщин. Скорость резки, толщина металла, расход ацетилена в подогревающем пламени и эффективная мощность пламени связаны между собой зависимостью.

Производительность резки зависит также от распределения подогрева. Применение нескольких подогревающих пламен увеличивает скорость резки по сравнению с таковой при одном подогревающем пламени при равных расходах ацетилена в обоих случаях. Общий предварительный подогрев металла при резке до любой температуры позволяет значительно увеличить скорость резки. Основные условия резки. Для процесса резки металла кислородом необходимы следующие условия: температура горения металла в кислороде должна быть ниже температуры плавления, иначе металл будет плавиться и переходить в жидкое состояние до того, как начнется его горение в кислороде; образующиеся окислы металла должны плавиться при температуре более низкой, чем температура горения металла, и не быть слишком вязкими; если металл не удовлетворяет этому требованию, то кислородная резка его без применения специальных флюсов невозможна, так как образующиеся окислы не смогут выдуваться из места разреза; количество тепла, выделяющееся при сгорании металла в кислороде, должно быть достаточно большим, чтобы обеспечить поддержание процесса резки; теплопроводность металла не должна быть слишком высокой, так как иначе, вследствие интенсивного теплоотвода, процесс резки может прерываться.

Поэтому кислородная резка этих сталей требует применения особых приемов и способов. До разработки способа кислородно-флюсовой резки нержавеющих сталей пользовались приемами резки, основанными на создании вблизи поверхности реза участков металла с высокой температурой нагрева, способствующих расплавлению пленки окислов хрома.

Это достигалось введением в разрез дополнительного тепла от сгорания присадки из малоуглеродистой стали. В качестве таковой использовалась стальная полоска, уложенная вдоль линии реза, или валик, наплавленный металлическим электродом.

Выделяющееся при сгорании железа тепло, а также переходящее в шлак железо полоски или наплавки и его окислы способствуют разжижению и удалению окислов хрома. Лучшие результаты получают при непрерывном введении в рез прутка из низкоуглеродистой стали диаметром 10—15 мм. При соответствующем навыке этим способом можно выполнять отрезку прибылей отливок толщиной до мм. Существенным недостатком способа Ищется необходимость выполнения резки двумя рабочими: один должен быстро подавать пруток в зону резки, а второй — вести резку.

При резке необходима повышенная мощность подогревающего пламени. При резке стали толщиной 10— мм электроду придают зигзагообразное движение. В качестве флюса применяют, как правило, железный порошок с зернами 0,1—0,2 мм. Вследствие этого тугоплавкие окислы остаются в жидком состоянии и, будучи разбавлены продуктами сгорания железа, дают жидкотекучие шлаки. Резка протекает с нормальной скоростью, а поверхность реза получается чистой.

Кислородная резка чугуна без флюса также затруднена, так как температура плавления чугуна ниже температуры горения железа. Содержащийся в чугуне кремний дает тугоплавкую пленку окиси, которая препятствует нормальному протеканию резки. При сгорании углерода чугуна образуется газообразная окись углерода, загрязняющая режущий кислород и препятствующая сгоранию железа. Разрезать чугун можно без флюса, только применяя более мощное ацетиленокислородное пламя с избытком ацетилена. Ядро пламени должно иметь длину, равную толщине разрезаемого чугуна.

Резка производится с поперечными колебательными движениями мундштука, создающими более широкий рез. При этом способе расходуется больше металла, кислорода и ацетилена, чем при резке стали, а разрез получается неровный, с оплавленными кромками. Поэтому для высококачественной резки чугуна также применяют кислородно-флюсовую резку. Цветные металлы медь, латунь, бронза обладают высокой теплопроводностью и при их окислении кислородом выделяется количество тепла, недостаточное для дальнейшего развития процесса горения металла.

При кислородной резке этих металлов также образуются тугоплавкие окислы, препятствующие резке. Поэтому кислородная резка бронзы и латуни возможна только с применением флюсов. При резке чугуна в порошок добавляют феррофосфор или алюминиевый порошок и кварцевый песок. Газо-дуговая резка За последние годы широкое распространение получили способы газо-дуговой резки: воздушно-дуговая, плазменно-дуговая и плазменная.

Они применяются для резки многих металлов и сплавов. В ряде случаев находит также применение кислородно-дуговая резка стали. Способы газо-дуговой резки используют сейчас на многих предприятиях, что дает большую экономию в народном хозяйстве.

Ведутся работы по механизации и автоматизации газо-дуговой резки. Воздушно-дуговая резка Этот способ резки основан на расплавлении металла в месте реза скользящей электрической дугой, горящей между угольным электродом и металлом, с непрерывным удалением жидкого металла струей сжатого воздуха. Применяется в качестве разделительной и поверхностной резки. Для воздушно-дуговой резки может применятся также переменный ток, однако он даёт меньшую производительность, чем постоянный.

Этим способом можно резать различные металлы нержавеющие стали, чугун, латунь и трудноокисляемые сплавы толщиной до мм. Плазменно-дуговая резка При плазменно-дуговой резке [3] дуга возбуждается между разрезаемым металлом и неплавящимся вольфрамовым электродом с добавлением лантана , расположенным внутри электрически изолированного формирующего наконечника.

В большинстве случаев применяется дуга постоянного тока прямой полярности. Продуваемый через сопло газ обжимает дугу, обеспечивает в ней интенсивное плазмообразование и придаёт дуге проникающие свойства. Плазменно-дуговую резку целесообразно применять: при изготовлении из листов деталей с фигурными контурами; изготовление деталей с прямолинейными контурами, не требующих механической обработки; вырезки проёмов и отверстий в металлах; резке полос, прутков, труб и профилей и придания их торцам нужной формы; обработке кромок поковок и подготовке их под сварку; вырезке заготовок для механической обработки, штамповки и сварки; обработке литья.

По сравнению с кислородной плазменно-дуговая резка имеет следующие преимущества: возможность резки на одном и том же оборудовании любых материалов; высокая скорость резки металлов небольших толщин до 20 мм ; использование недорогих и недефицитных газов и отсутствие потребления горючих газов углеводородов ; малые тепловые деформации вырезаемых деталей; относительная простота автоматизации процесса резки, определяемого в основном электрическими параметрами.

Недостатками плазменно-дуговой резки являются: более сложное и дорогое оборудование, включающее источник питания и регулирования дуги; более сложное обслуживание; необходимость применения водяного охлаждения горелки и защитных масок со светофильтрами для резчика; необходимость более высокой квалификации резчика. Плазменно-дуговую резку целесообразно применять при обработке металлов, которые трудно или невозможно резать другими, или когда плазменно-дуговая резка оказывается наиболее экономичной, или обеспечивает скорости резки, согласующиеся с принятыми в технологии обработки того или иного изделия.

Плазменно-дуговой резкой обрабатывают алюминий и его сплавы; медь и ее сплавы; нержавеющие высоколегированные стали; низкоуглеродистую сталь; чугун; магний и его сплавы; титан. Возможность резки металла данной толщины и интенсивность проплавления определяются мощностью дуги, т. Скорость резки регулируется изменением тока дуги регулированием источника питания.

Скорость резки быстро падает с увеличением толщины металла и одновременно увеличивается ширина реза. Водород и азот диссоциируют расщепляются на атомы в дуге, а затем атомы их вновь соединяются в молекулы рекомбинируют на более холодных частях металла, выделяя при этом большое количество дополнительного тепла. Это способствует более благоприятному распределению тепла по всему объему металла, что имеет особое значение при резке металла больших толщин.

При резке обычно применяют следующие плазмообразующие газы и из смеси. Для резки алюминиевых сплавов целесообразнее применять азотно-водородные смеси. Резку сплавов толщиной 5—20 мм рекомендуется производить в азоте, а толщиной 20— мм в азото-водородной смеси. Аргоно-водородные смеси при резке алюминиевых сплавов применяют при необходимости получения особо чистых резов.

При резке нержавеющих сталей до 50 мм толщиной применяют смесь кислорода с азотом, который, протекая вдоль электрода, защищает его от окисления, а также азот и азото-водородную смесь. Нержавеющие стали малой толщины до 20 мм , кромки которых не требуют высокой стойкости против межкристаллитной коррозии, можно резать в азоте, а нержавеющие стали толщиной 20 — 50 мм — в азотно-водородной смеси. При повышенных требованиях в отношении стойкости кромок к межкристаллитной коррозии нержавеющие стали режут в азотно-водородной смеси.

Полученные при этом кромки можно сваривать встык без присадочной проволоки. Смеси с аргоном при резке нержавеющих сталей применяют реже. Расходы газов при резке зависят только от рода газа и разрезаемого металла. В пределах до мм толщины металла расход газа в большинстве случаев остается постоянным.

В некоторых случаях резки металла малой толщины применяют повышенные расходы газов, что способствует устранению натеков на нижних кромках реза. Для больших толщин указанных металлов кроме алюминия и его сплавов этот способ применяется значительно реже, так как экономичнее использовать другие способы резки кислородную, кислородно-флюсовую. Плазменно-дуговая резка может производиться вручную и с помощью газорезательных машин. Установка включает баллоны с газами, источник постоянного тока, распределительное устройство для управления процессом и резак.

Второй провод от источника тока подключают к разрезаемому металлу. Плазменная резка При плазменной резке обрабатываемый материал не включается в электрическую цепь дуги.

Острое кинжалообразное пламя дуговой плазмы используют для расплавления обрабатываемого материала, при сварке и резке металлов, в том числе тугоплавких, а также при резке и плавлении неэлектропроводных материалов. Резку ведут при минимальном зазоре между мундштуком и металлом, в некоторых случаях даже касаясь торцом мундштука поверхности металла. Рез получается очень узкий, равный вверху диаметру канала сопла.

В нижней части ширина реза меньше, чем в верхней. Дугу возбуждают кратковременным касанием концом электрода кромок сопла, для чего в головке имеется устройство для осевого перемещения электрода вниз. Сначала в мундштук пускают газ, затем опусканием электрода возбуждают дугу. В первоначальное положение электрод возвращается под действием пружины. Резка производится ручным способом или механизированным, на резательных машинах, применяемых для плазменно-дуговой резки.

Кислородно-дуговая резка Кислородно-дуговую резку применяют для углеродистой стали. Металл расплавляется электрической дугой, а струя кислорода служит для сжигания металла и выдувания шлаков из места разреза.

В качестве электродов используют стальные трубки наружным диаметром 8 мм, длиной — мм, изготовляемые протяжкой из стальной полосы. Снаружи трубки-электроды покрывают обмазкой для устойчивости горения дуги.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: резка металла кислородным копьём

Реферат на тему: «Сварка. Кислородная резка.» Содержание. 1. Возникновение и развитие сварки. 2. Сущность процесса сварки. 3. Кислородная резка металлов получила широкое применение, ее достоинствами являются несложность применяемого оборудования и приемов работы.

Обработка металла посредством нагрева термическая резка. Процесс кислородной резки, применяемые материалы. Оборудование и аппаратура для газокислородной резки. Механизация процесса и контроль качества резки. Организация безопасных условий труда. Понятие, сущность и классификация способов дуговой резки. Рабочие инструменты, используемые при резке металлов. Организация рабочего места сварщика. Техника безопасности труда при дуговой сварке и резке. Режимы лазерной резки металлов. Механизмы газолазерной резки. Технология лазерной резки, ее достоинства и недостатки. Кислородная резка стали. Сварочный полуавтомат АУ. Технология полуавтоматической сварки в углекислом газе. Сварка трубных конструкций.

Затруднительно начинать резку круглой заготовки. В котлостроении при вырезке отверстий под штуцеры и патрубки, когда процесс резки начинают внутри контура вырезаемого отверстия, начальное отверстие образуют движущимся резаком: в этом случае струя кислорода, врезаясь постепенно в металл, после перемещения резака на некоторое расстояние пробивает сквозное отверстие.

Металлы и Сварка Кислородная резка металлов получила широкое применение, ее достоинствами являются несложность применяемого оборудования и приемов работы, универсальность и экономичность процесса. Процесс кислородной резки рисунок 3. Образующиеся окислы и шлак выдуваются струей кислорода из зоны реза.

Кислородная резка

Газовая резка металлов Кислородная резка Кислородной или газовой резкой ранее называвшейся автогенной резкой называется процесс разрезания металла действием струи кислорода, в которой сгорает металл, предварительно подогретый до температуры воспламенения; горение металла идет на заранее намеченной плоскости. Для осуществления этого процесса металл нагревают газовой горелкой в месте начала разреза до температуры воспламенения в кислороде и направляют на нагретую поверхность струю кислорода. Нагретый верхний слой металла воспламеняется; выделяющееся при сгорании этого слоя тепло нагревает следующий слой, который также сгорает; струя кислорода уносит образующиеся окислы, я процесс горения распространяется на лежащие ниже слои. Таким образом, постепенно под действием струи кислорода в определенном направлении металл выжигается, и кусок его может быть разрезан. В настоящее время при помощи газовой резки можно разрезать куски стали толщиной до мм и более. Применяя газовую резку, можно также вырезать детали, имеющие сложную форму.

Резка металла

Кислород — свойства, меры безопасности, применение для сварки Кислородная резка Кислородная резка заключается в сгорании разрезаемого металла в кислородной струе и удалении этой струей образовавшихся оксидов. Технология кислородной резки Процесс кислородной резки представлен на рисунке ниже. Кислородная резка, схема процесса Разрезаемый металл предварительно нагревается подогревающим пламенем резака, которое образуется в результате сгорания горючего газа в смеси с кислородом. Чистый кислород из центрального канала мундштука, предназначенный для окисления разрезаемого металла и удаления оксидов, называют режущим в отличие от кислорода подогревающего пламени, поступающего в смеси с горючим газом из боковых каналов мундштука. Струя режущего кислорода вытесняет в разрез расплавленные оксиды, которые, в свою очередь, нагревают следующий слой металла, способствуя его интенсивному окислению и т. В результате разрезаемый лист подвергается окислению по всей толщине, а расплавленные оксиды удаляются из зоны резки под действием струи режущего кислорода. Техника кислородной резки Поверхность разрезаемого листа следует очистить от окалины, краски, масла, ржавчины и грязи. Особое внимание уделяется очистке поверхности листа от окалины, поскольку она препятствует контакту металла с пламенем и струей режущего кислорода. Для этого требуется незначительный прогрев поверхности стали подогревающим пламенем резака, в результате которого окалина отскакивает от поверхности. Прогрев следует выполнять узкой полосой по линии предполагаемого реза, перемещая пламя со скоростью, приблизительно соответствующей скорости резки.

.

.

Сварка. Кислородная резка

.

Газовая резка металла реферат

.

.

.

.

.

ВИДЕО ПО ТЕМЕ: Как правильно выставить пламя на резаке.
Похожие публикации